Browse Source
It takes about 5.2 seconds to load and decompress the entire 115mb database on my quad-core i5-6600k. Needless to say, there will be some cutting this down via tossing out some number of puzzles.master
6 changed files with 774 additions and 13 deletions
@ -0,0 +1,69 @@ |
|||
(comptime-define-symbol 'Unix) |
|||
(set-cakelisp-option cakelisp-src-dir "Dependencies/cakelisp/src") |
|||
(add-cakelisp-search-directory "test/src" "Dependencies/cakelisp/runtime") |
|||
(import &comptime-only "Macros.cake") |
|||
|
|||
(add-c-search-directory-module "../../src") ;; Building from Dependencies/gamelib |
|||
(c-import "<stdio.h>" "<stdlib.h>" "<fcntl.h>" "<unistd.h>" |
|||
"bunzip.h") |
|||
|
|||
(add-c-build-dependency "bunzip-4.1.c") ;; LGPLv2 |
|||
|
|||
(var-global g-bunzip-debug bool false) |
|||
|
|||
(defun bunzip-decompress (bz2-file (* (const char)) &return bool) |
|||
(var file-descriptor int (open bz2-file O_RDONLY)) |
|||
(when (= -1 file-descriptor) |
|||
(printf "Failed to load file %s\n" bz2-file) |
|||
(return false)) |
|||
|
|||
;; Prints all of it, which is a lot! |
|||
;; (unless (= 0 (uncompressStream file-descriptor 1)) |
|||
;; (return false)) |
|||
|
|||
(var header-data (* bunzip_data) null) |
|||
(var error-code int 0) |
|||
(set error-code (start_bunzip (addr header-data) file-descriptor |
|||
null 0)) ;; Unused: Input buffer |
|||
(when error-code |
|||
(printf "Bunzip error %d\n" error-code) |
|||
(free header-data) |
|||
(close file-descriptor) |
|||
(return false)) |
|||
|
|||
;; Add room for null terminator. Not necessary for binary data |
|||
(var output ([] 4097 char) (array 0)) |
|||
(var num-bytes-read int 0) |
|||
(while true |
|||
(var return-code int (read_bunzip header-data output (- (array-size output) 1))) |
|||
(when (< return-code RETVAL_LAST_BLOCK) ;; On success, return code = num bytes written |
|||
(printf "Bunzip error %d\n" return-code) |
|||
(free header-data) |
|||
(close file-descriptor) |
|||
(return false)) |
|||
|
|||
(when (> return-code 0) |
|||
;; Set null terminator |
|||
(set (at return-code output) 0) |
|||
(set num-bytes-read (+ num-bytes-read return-code))) |
|||
|
|||
;; (printf "Output: %d bytes\n%s[end]\n" return-code output) |
|||
(when (= return-code RETVAL_LAST_BLOCK) |
|||
(when g-bunzip-debug (printf "Last Output: %s[end]\n" output)) |
|||
(break))) |
|||
|
|||
(when g-bunzip-debug (printf "Output: %d bytes\n" num-bytes-read)) |
|||
(free header-data) |
|||
(close file-descriptor) |
|||
(return true)) |
|||
|
|||
(comptime-cond |
|||
('Kitty-Main) |
|||
(true ;; Standalone test |
|||
(defun main (&return int) |
|||
(var bz2-file (* (const char)) "assets/rush.txt.bz2") |
|||
(unless (bunzip-decompress bz2-file) |
|||
(return 1)) |
|||
(return 0)) |
|||
|
|||
(set-cakelisp-option executable-output "../../decompression-test"))) |
@ -0,0 +1,543 @@ |
|||
/* vi: set sw=4 ts=4: */ |
|||
/* Small bzip2 deflate implementation, by Rob Landley (rob@landley.net).
|
|||
|
|||
Based on bzip2 decompression code by Julian R Seward (jseward@acm.org), |
|||
which also acknowledges contributions by Mike Burrows, David Wheeler, |
|||
Peter Fenwick, Alistair Moffat, Radford Neal, Ian H. Witten, |
|||
Robert Sedgewick, and Jon L. Bentley. |
|||
|
|||
This code is licensed under the LGPLv2: |
|||
LGPL (http://www.gnu.org/copyleft/lgpl.html
|
|||
*/ |
|||
|
|||
/*
|
|||
Size and speed optimizations by Manuel Novoa III (mjn3@codepoet.org). |
|||
|
|||
More efficient reading of huffman codes, a streamlined read_bunzip() |
|||
function, and various other tweaks. In (limited) tests, approximately |
|||
20% faster than bzcat on x86 and about 10% faster on arm. |
|||
|
|||
Note that about 2/3 of the time is spent in read_unzip() reversing |
|||
the Burrows-Wheeler transformation. Much of that time is delay |
|||
resulting from cache misses. |
|||
|
|||
I would ask that anyone benefiting from this work, especially those |
|||
using it in commercial products, consider making a donation to my local |
|||
non-profit hospice organization (see www.hospiceacadiana.com) in the |
|||
name of the woman I loved, Toni W. Hagan, who passed away Feb. 12, 2003. |
|||
|
|||
Manuel |
|||
*/ |
|||
|
|||
/* Modified by Macoy Madson:
|
|||
- Give no errors with a C++ compiler (all -fpermissive errors) |
|||
- Add header file |
|||
*/ |
|||
|
|||
#include "bunzip.h" |
|||
|
|||
#include <stdio.h> |
|||
#include <stdlib.h> |
|||
#include <string.h> |
|||
#include <unistd.h> |
|||
#include <limits.h> |
|||
|
|||
/* Return the next nnn bits of input. All reads from the compressed input
|
|||
are done through this function. All reads are big endian */ |
|||
static unsigned int get_bits(bunzip_data *bd, char bits_wanted) |
|||
{ |
|||
unsigned int bits=0; |
|||
|
|||
/* If we need to get more data from the byte buffer, do so. (Loop getting
|
|||
one byte at a time to enforce endianness and avoid unaligned access.) */ |
|||
while (bd->inbufBitCount<bits_wanted) { |
|||
/* If we need to read more data from file into byte buffer, do so */ |
|||
if(bd->inbufPos==bd->inbufCount) { |
|||
if((bd->inbufCount = read(bd->in_fd, bd->inbuf, IOBUF_SIZE)) <= 0) |
|||
longjmp(bd->jmpbuf,RETVAL_UNEXPECTED_INPUT_EOF); |
|||
bd->inbufPos=0; |
|||
} |
|||
/* Avoid 32-bit overflow (dump bit buffer to top of output) */ |
|||
if(bd->inbufBitCount>=24) { |
|||
bits=bd->inbufBits&((1<<bd->inbufBitCount)-1); |
|||
bits_wanted-=bd->inbufBitCount; |
|||
bits<<=bits_wanted; |
|||
bd->inbufBitCount=0; |
|||
} |
|||
/* Grab next 8 bits of input from buffer. */ |
|||
bd->inbufBits=(bd->inbufBits<<8)|bd->inbuf[bd->inbufPos++]; |
|||
bd->inbufBitCount+=8; |
|||
} |
|||
/* Calculate result */ |
|||
bd->inbufBitCount-=bits_wanted; |
|||
bits|=(bd->inbufBits>>bd->inbufBitCount)&((1<<bits_wanted)-1); |
|||
|
|||
return bits; |
|||
} |
|||
|
|||
/* Unpacks the next block and sets up for the inverse burrows-wheeler step. */ |
|||
|
|||
static int get_next_block(bunzip_data *bd) |
|||
{ |
|||
struct group_data *hufGroup; |
|||
int dbufCount,nextSym,dbufSize,groupCount,*base,*limit,selector, |
|||
i,j,k,t,runPos,symCount,symTotal,nSelectors,byteCount[256]; |
|||
unsigned char uc, symToByte[256], mtfSymbol[256], *selectors; |
|||
unsigned int *dbuf,origPtr; |
|||
|
|||
dbuf=bd->dbuf; |
|||
dbufSize=bd->dbufSize; |
|||
selectors=bd->selectors; |
|||
/* Reset longjmp I/O error handling */ |
|||
i=setjmp(bd->jmpbuf); |
|||
if(i) return i; |
|||
/* Read in header signature and CRC, then validate signature.
|
|||
(last block signature means CRC is for whole file, return now) */ |
|||
i = get_bits(bd,24); |
|||
j = get_bits(bd,24); |
|||
bd->headerCRC=get_bits(bd,32); |
|||
if ((i == 0x177245) && (j == 0x385090)) return RETVAL_LAST_BLOCK; |
|||
if ((i != 0x314159) || (j != 0x265359)) return RETVAL_NOT_BZIP_DATA; |
|||
/* We can add support for blockRandomised if anybody complains. There was
|
|||
some code for this in busybox 1.0.0-pre3, but nobody ever noticed that |
|||
it didn't actually work. */ |
|||
if(get_bits(bd,1)) return RETVAL_OBSOLETE_INPUT; |
|||
if((origPtr=get_bits(bd,24)) > dbufSize) return RETVAL_DATA_ERROR; |
|||
/* mapping table: if some byte values are never used (encoding things
|
|||
like ascii text), the compression code removes the gaps to have fewer |
|||
symbols to deal with, and writes a sparse bitfield indicating which |
|||
values were present. We make a translation table to convert the symbols |
|||
back to the corresponding bytes. */ |
|||
t=get_bits(bd, 16); |
|||
symTotal=0; |
|||
for (i=0;i<16;i++) { |
|||
if(t&(1<<(15-i))) { |
|||
k=get_bits(bd,16); |
|||
for(j=0;j<16;j++) |
|||
if(k&(1<<(15-j))) symToByte[symTotal++]=(16*i)+j; |
|||
} |
|||
} |
|||
/* How many different huffman coding groups does this block use? */ |
|||
groupCount=get_bits(bd,3); |
|||
if (groupCount<2 || groupCount>MAX_GROUPS) return RETVAL_DATA_ERROR; |
|||
/* nSelectors: Every GROUP_SIZE many symbols we select a new huffman coding
|
|||
group. Read in the group selector list, which is stored as MTF encoded |
|||
bit runs. (MTF=Move To Front, as each value is used it's moved to the |
|||
start of the list.) */ |
|||
if(!(nSelectors=get_bits(bd, 15))) return RETVAL_DATA_ERROR; |
|||
for(i=0; i<groupCount; i++) mtfSymbol[i] = i; |
|||
for(i=0; i<nSelectors; i++) { |
|||
/* Get next value */ |
|||
for(j=0;get_bits(bd,1);j++) if (j>=groupCount) return RETVAL_DATA_ERROR; |
|||
/* Decode MTF to get the next selector */ |
|||
uc = mtfSymbol[j]; |
|||
for(;j;j--) mtfSymbol[j] = mtfSymbol[j-1]; |
|||
mtfSymbol[0]=selectors[i]=uc; |
|||
} |
|||
/* Read the huffman coding tables for each group, which code for symTotal
|
|||
literal symbols, plus two run symbols (RUNA, RUNB) */ |
|||
symCount=symTotal+2; |
|||
for (j=0; j<groupCount; j++) { |
|||
unsigned char length[MAX_SYMBOLS],temp[MAX_HUFCODE_BITS+1]; |
|||
int minLen, maxLen, pp; |
|||
/* Read huffman code lengths for each symbol. They're stored in
|
|||
a way similar to mtf; record a starting value for the first symbol, |
|||
and an offset from the previous value for everys symbol after that. |
|||
(Subtracting 1 before the loop and then adding it back at the end is |
|||
an optimization that makes the test inside the loop simpler: symbol |
|||
length 0 becomes negative, so an unsigned inequality catches it.) */ |
|||
t=get_bits(bd, 5)-1; |
|||
for (i = 0; i < symCount; i++) { |
|||
for(;;) { |
|||
if (((unsigned)t) > (MAX_HUFCODE_BITS-1)) |
|||
return RETVAL_DATA_ERROR; |
|||
/* If first bit is 0, stop. Else second bit indicates whether
|
|||
to increment or decrement the value. Optimization: grab 2 |
|||
bits and unget the second if the first was 0. */ |
|||
k = get_bits(bd,2); |
|||
if (k < 2) { |
|||
bd->inbufBitCount++; |
|||
break; |
|||
} |
|||
/* Add one if second bit 1, else subtract 1. Avoids if/else */ |
|||
t+=(((k+1)&2)-1); |
|||
} |
|||
/* Correct for the initial -1, to get the final symbol length */ |
|||
length[i]=t+1; |
|||
} |
|||
/* Find largest and smallest lengths in this group */ |
|||
minLen=maxLen=length[0]; |
|||
for(i = 1; i < symCount; i++) { |
|||
if(length[i] > maxLen) maxLen = length[i]; |
|||
else if(length[i] < minLen) minLen = length[i]; |
|||
} |
|||
/* Calculate permute[], base[], and limit[] tables from length[].
|
|||
* |
|||
* permute[] is the lookup table for converting huffman coded symbols |
|||
* into decoded symbols. base[] is the amount to subtract from the |
|||
* value of a huffman symbol of a given length when using permute[]. |
|||
* |
|||
* limit[] indicates the largest numerical value a symbol with a given |
|||
* number of bits can have. This is how the huffman codes can vary in |
|||
* length: each code with a value>limit[length] needs another bit. |
|||
*/ |
|||
hufGroup=bd->groups+j; |
|||
hufGroup->minLen = minLen; |
|||
hufGroup->maxLen = maxLen; |
|||
/* Note that minLen can't be smaller than 1, so we adjust the base
|
|||
and limit array pointers so we're not always wasting the first |
|||
entry. We do this again when using them (during symbol decoding).*/ |
|||
base=hufGroup->base-1; |
|||
limit=hufGroup->limit-1; |
|||
/* Calculate permute[]. Concurently, initialize temp[] and limit[]. */ |
|||
pp=0; |
|||
for(i=minLen;i<=maxLen;i++) { |
|||
temp[i]=limit[i]=0; |
|||
for(t=0;t<symCount;t++) |
|||
if(length[t]==i) hufGroup->permute[pp++] = t; |
|||
} |
|||
/* Count symbols coded for at each bit length */ |
|||
for (i=0;i<symCount;i++) temp[length[i]]++; |
|||
/* Calculate limit[] (the largest symbol-coding value at each bit
|
|||
* length, which is (previous limit<<1)+symbols at this level), and |
|||
* base[] (number of symbols to ignore at each bit length, which is |
|||
* limit minus the cumulative count of symbols coded for already). */ |
|||
pp=t=0; |
|||
for (i=minLen; i<maxLen; i++) { |
|||
pp+=temp[i]; |
|||
/* We read the largest possible symbol size and then unget bits
|
|||
after determining how many we need, and those extra bits could |
|||
be set to anything. (They're noise from future symbols.) At |
|||
each level we're really only interested in the first few bits, |
|||
so here we set all the trailing to-be-ignored bits to 1 so they |
|||
don't affect the value>limit[length] comparison. */ |
|||
limit[i]= (pp << (maxLen - i)) - 1; |
|||
pp<<=1; |
|||
base[i+1]=pp-(t+=temp[i]); |
|||
} |
|||
limit[maxLen+1] = INT_MAX; /* Sentinal value for reading next sym. */ |
|||
limit[maxLen]=pp+temp[maxLen]-1; |
|||
base[minLen]=0; |
|||
} |
|||
/* We've finished reading and digesting the block header. Now read this
|
|||
block's huffman coded symbols from the file and undo the huffman coding |
|||
and run length encoding, saving the result into dbuf[dbufCount++]=uc */ |
|||
|
|||
/* Initialize symbol occurrence counters and symbol Move To Front table */ |
|||
for(i=0;i<256;i++) { |
|||
byteCount[i] = 0; |
|||
mtfSymbol[i]=(unsigned char)i; |
|||
} |
|||
/* Loop through compressed symbols. */ |
|||
runPos=dbufCount=symCount=selector=0; |
|||
for(;;) { |
|||
/* Determine which huffman coding group to use. */ |
|||
if(!(symCount--)) { |
|||
symCount=GROUP_SIZE-1; |
|||
if(selector>=nSelectors) return RETVAL_DATA_ERROR; |
|||
hufGroup=bd->groups+selectors[selector++]; |
|||
base=hufGroup->base-1; |
|||
limit=hufGroup->limit-1; |
|||
} |
|||
/* Read next huffman-coded symbol. */ |
|||
/* Note: It is far cheaper to read maxLen bits and back up than it is
|
|||
to read minLen bits and then an additional bit at a time, testing |
|||
as we go. Because there is a trailing last block (with file CRC), |
|||
there is no danger of the overread causing an unexpected EOF for a |
|||
valid compressed file. As a further optimization, we do the read |
|||
inline (falling back to a call to get_bits if the buffer runs |
|||
dry). The following (up to got_huff_bits:) is equivalent to |
|||
j=get_bits(bd,hufGroup->maxLen); |
|||
*/ |
|||
while (bd->inbufBitCount<hufGroup->maxLen) { |
|||
if(bd->inbufPos==bd->inbufCount) { |
|||
j = get_bits(bd,hufGroup->maxLen); |
|||
goto got_huff_bits; |
|||
} |
|||
bd->inbufBits=(bd->inbufBits<<8)|bd->inbuf[bd->inbufPos++]; |
|||
bd->inbufBitCount+=8; |
|||
}; |
|||
bd->inbufBitCount-=hufGroup->maxLen; |
|||
j = (bd->inbufBits>>bd->inbufBitCount)&((1<<hufGroup->maxLen)-1); |
|||
got_huff_bits: |
|||
/* Figure how how many bits are in next symbol and unget extras */ |
|||
i=hufGroup->minLen; |
|||
while(j>limit[i]) ++i; |
|||
bd->inbufBitCount += (hufGroup->maxLen - i); |
|||
/* Huffman decode value to get nextSym (with bounds checking) */ |
|||
if ((i > hufGroup->maxLen) |
|||
|| (((unsigned)(j=(j>>(hufGroup->maxLen-i))-base[i])) |
|||
>= MAX_SYMBOLS)) |
|||
return RETVAL_DATA_ERROR; |
|||
nextSym = hufGroup->permute[j]; |
|||
/* We have now decoded the symbol, which indicates either a new literal
|
|||
byte, or a repeated run of the most recent literal byte. First, |
|||
check if nextSym indicates a repeated run, and if so loop collecting |
|||
how many times to repeat the last literal. */ |
|||
if (((unsigned)nextSym) <= SYMBOL_RUNB) { /* RUNA or RUNB */ |
|||
/* If this is the start of a new run, zero out counter */ |
|||
if(!runPos) { |
|||
runPos = 1; |
|||
t = 0; |
|||
} |
|||
/* Neat trick that saves 1 symbol: instead of or-ing 0 or 1 at
|
|||
each bit position, add 1 or 2 instead. For example, |
|||
1011 is 1<<0 + 1<<1 + 2<<2. 1010 is 2<<0 + 2<<1 + 1<<2. |
|||
You can make any bit pattern that way using 1 less symbol than |
|||
the basic or 0/1 method (except all bits 0, which would use no |
|||
symbols, but a run of length 0 doesn't mean anything in this |
|||
context). Thus space is saved. */ |
|||
t += (runPos << nextSym); /* +runPos if RUNA; +2*runPos if RUNB */ |
|||
runPos <<= 1; |
|||
continue; |
|||
} |
|||
/* When we hit the first non-run symbol after a run, we now know
|
|||
how many times to repeat the last literal, so append that many |
|||
copies to our buffer of decoded symbols (dbuf) now. (The last |
|||
literal used is the one at the head of the mtfSymbol array.) */ |
|||
if(runPos) { |
|||
runPos=0; |
|||
if(dbufCount+t>=dbufSize) return RETVAL_DATA_ERROR; |
|||
|
|||
uc = symToByte[mtfSymbol[0]]; |
|||
byteCount[uc] += t; |
|||
while(t--) dbuf[dbufCount++]=uc; |
|||
} |
|||
/* Is this the terminating symbol? */ |
|||
if(nextSym>symTotal) break; |
|||
/* At this point, nextSym indicates a new literal character. Subtract
|
|||
one to get the position in the MTF array at which this literal is |
|||
currently to be found. (Note that the result can't be -1 or 0, |
|||
because 0 and 1 are RUNA and RUNB. But another instance of the |
|||
first symbol in the mtf array, position 0, would have been handled |
|||
as part of a run above. Therefore 1 unused mtf position minus |
|||
2 non-literal nextSym values equals -1.) */ |
|||
if(dbufCount>=dbufSize) return RETVAL_DATA_ERROR; |
|||
i = nextSym - 1; |
|||
uc = mtfSymbol[i]; |
|||
/* Adjust the MTF array. Since we typically expect to move only a
|
|||
* small number of symbols, and are bound by 256 in any case, using |
|||
* memmove here would typically be bigger and slower due to function |
|||
* call overhead and other assorted setup costs. */ |
|||
do { |
|||
mtfSymbol[i] = mtfSymbol[i-1]; |
|||
} while (--i); |
|||
mtfSymbol[0] = uc; |
|||
uc=symToByte[uc]; |
|||
/* We have our literal byte. Save it into dbuf. */ |
|||
byteCount[uc]++; |
|||
dbuf[dbufCount++] = (unsigned int)uc; |
|||
} |
|||
/* At this point, we've read all the huffman-coded symbols (and repeated
|
|||
runs) for this block from the input stream, and decoded them into the |
|||
intermediate buffer. There are dbufCount many decoded bytes in dbuf[]. |
|||
Now undo the Burrows-Wheeler transform on dbuf. |
|||
See http://dogma.net/markn/articles/bwt/bwt.htm
|
|||
*/ |
|||
/* Turn byteCount into cumulative occurrence counts of 0 to n-1. */ |
|||
j=0; |
|||
for(i=0;i<256;i++) { |
|||
k=j+byteCount[i]; |
|||
byteCount[i] = j; |
|||
j=k; |
|||
} |
|||
/* Figure out what order dbuf would be in if we sorted it. */ |
|||
for (i=0;i<dbufCount;i++) { |
|||
uc=(unsigned char)(dbuf[i] & 0xff); |
|||
dbuf[byteCount[uc]] |= (i << 8); |
|||
byteCount[uc]++; |
|||
} |
|||
/* Decode first byte by hand to initialize "previous" byte. Note that it
|
|||
doesn't get output, and if the first three characters are identical |
|||
it doesn't qualify as a run (hence writeRunCountdown=5). */ |
|||
if(dbufCount) { |
|||
if(origPtr>=dbufCount) return RETVAL_DATA_ERROR; |
|||
bd->writePos=dbuf[origPtr]; |
|||
bd->writeCurrent=(unsigned char)(bd->writePos&0xff); |
|||
bd->writePos>>=8; |
|||
bd->writeRunCountdown=5; |
|||
} |
|||
bd->writeCount=dbufCount; |
|||
|
|||
return RETVAL_OK; |
|||
} |
|||
|
|||
/* Undo burrows-wheeler transform on intermediate buffer to produce output.
|
|||
If start_bunzip was initialized with out_fd=-1, then up to len bytes of |
|||
data are written to outbuf. Return value is number of bytes written or |
|||
error (all errors are negative numbers). If out_fd!=-1, outbuf and len |
|||
are ignored, data is written to out_fd and return is RETVAL_OK or error. |
|||
*/ |
|||
|
|||
int read_bunzip(bunzip_data *bd, char *outbuf, int len) |
|||
{ |
|||
const unsigned int *dbuf; |
|||
int pos,current,previous,gotcount; |
|||
|
|||
/* If last read was short due to end of file, return last block now */ |
|||
if(bd->writeCount<0) return bd->writeCount; |
|||
|
|||
gotcount = 0; |
|||
dbuf=bd->dbuf; |
|||
pos=bd->writePos; |
|||
current=bd->writeCurrent; |
|||
|
|||
/* We will always have pending decoded data to write into the output
|
|||
buffer unless this is the very first call (in which case we haven't |
|||
huffman-decoded a block into the intermediate buffer yet). */ |
|||
|
|||
if (bd->writeCopies) { |
|||
/* Inside the loop, writeCopies means extra copies (beyond 1) */ |
|||
--bd->writeCopies; |
|||
/* Loop outputting bytes */ |
|||
for(;;) { |
|||
/* If the output buffer is full, snapshot state and return */ |
|||
if(gotcount >= len) { |
|||
bd->writePos=pos; |
|||
bd->writeCurrent=current; |
|||
bd->writeCopies++; |
|||
return len; |
|||
} |
|||
/* Write next byte into output buffer, updating CRC */ |
|||
outbuf[gotcount++] = current; |
|||
bd->writeCRC=(((bd->writeCRC)<<8) |
|||
^bd->crc32Table[((bd->writeCRC)>>24)^current]); |
|||
/* Loop now if we're outputting multiple copies of this byte */ |
|||
if (bd->writeCopies) { |
|||
--bd->writeCopies; |
|||
continue; |
|||
} |
|||
decode_next_byte: |
|||
if (!bd->writeCount--) break; |
|||
/* Follow sequence vector to undo Burrows-Wheeler transform */ |
|||
previous=current; |
|||
pos=dbuf[pos]; |
|||
current=pos&0xff; |
|||
pos>>=8; |
|||
/* After 3 consecutive copies of the same byte, the 4th is a repeat
|
|||
count. We count down from 4 instead |
|||
* of counting up because testing for non-zero is faster */ |
|||
if(--bd->writeRunCountdown) { |
|||
if(current!=previous) bd->writeRunCountdown=4; |
|||
} else { |
|||
/* We have a repeated run, this byte indicates the count */ |
|||
bd->writeCopies=current; |
|||
current=previous; |
|||
bd->writeRunCountdown=5; |
|||
/* Sometimes there are just 3 bytes (run length 0) */ |
|||
if(!bd->writeCopies) goto decode_next_byte; |
|||
/* Subtract the 1 copy we'd output anyway to get extras */ |
|||
--bd->writeCopies; |
|||
} |
|||
} |
|||
/* Decompression of this block completed successfully */ |
|||
bd->writeCRC=~bd->writeCRC; |
|||
bd->totalCRC=((bd->totalCRC<<1) | (bd->totalCRC>>31)) ^ bd->writeCRC; |
|||
/* If this block had a CRC error, force file level CRC error. */ |
|||
if(bd->writeCRC!=bd->headerCRC) { |
|||
bd->totalCRC=bd->headerCRC+1; |
|||
return RETVAL_LAST_BLOCK; |
|||
} |
|||
} |
|||
|
|||
/* Refill the intermediate buffer by huffman-decoding next block of input */ |
|||
/* (previous is just a convenient unused temp variable here) */ |
|||
previous=get_next_block(bd); |
|||
if(previous) { |
|||
bd->writeCount=previous; |
|||
return (previous!=RETVAL_LAST_BLOCK) ? previous : gotcount; |
|||
} |
|||
bd->writeCRC=0xffffffffUL; |
|||
pos=bd->writePos; |
|||
current=bd->writeCurrent; |
|||
goto decode_next_byte; |
|||
} |
|||
|
|||
/* Allocate the structure, read file header. If in_fd==-1, inbuf must contain
|
|||
a complete bunzip file (len bytes long). If in_fd!=-1, inbuf and len are |
|||
ignored, and data is read from file handle into temporary buffer. */ |
|||
int start_bunzip(bunzip_data **bdp, int in_fd, char *inbuf, int len) |
|||
{ |
|||
bunzip_data *bd; |
|||
unsigned int i,j,c; |
|||
const unsigned int BZh0=(((unsigned int)'B')<<24)+(((unsigned int)'Z')<<16) |
|||
+(((unsigned int)'h')<<8)+(unsigned int)'0'; |
|||
|
|||
/* Figure out how much data to allocate */ |
|||
i=sizeof(bunzip_data); |
|||
if(in_fd!=-1) i+=IOBUF_SIZE; |
|||
/* Allocate bunzip_data. Most fields initialize to zero. */ |
|||
if(!(bd=*bdp=(bunzip_data*)malloc(i))) return RETVAL_OUT_OF_MEMORY; |
|||
memset(bd,0,sizeof(bunzip_data)); |
|||
/* Setup input buffer */ |
|||
if(-1==(bd->in_fd=in_fd)) { |
|||
bd->inbuf=(unsigned char*)inbuf; |
|||
bd->inbufCount=len; |
|||
} else bd->inbuf=(unsigned char *)(bd+1); |
|||
/* Init the CRC32 table (big endian) */ |
|||
for(i=0;i<256;i++) { |
|||
c=i<<24; |
|||
for(j=8;j;j--) |
|||
c=c&0x80000000 ? (c<<1)^0x04c11db7 : (c<<1); |
|||
bd->crc32Table[i]=c; |
|||
} |
|||
/* Setup for I/O error handling via longjmp */ |
|||
i=setjmp(bd->jmpbuf); |
|||
if(i) return i; |
|||
|
|||
/* Ensure that file starts with "BZh['1'-'9']." */ |
|||
i = get_bits(bd,32); |
|||
if (((unsigned int)(i-BZh0-1)) >= 9) return RETVAL_NOT_BZIP_DATA; |
|||
|
|||
/* Fourth byte (ascii '1'-'9'), indicates block size in units of 100k of
|
|||
uncompressed data. Allocate intermediate buffer for block. */ |
|||
bd->dbufSize=100000*(i-BZh0); |
|||
|
|||
if(!(bd->dbuf=(unsigned int*)malloc(bd->dbufSize * sizeof(int)))) |
|||
return RETVAL_OUT_OF_MEMORY; |
|||
return RETVAL_OK; |
|||
} |
|||
|
|||
/* Example usage: decompress src_fd to dst_fd. (Stops at end of bzip data,
|
|||
not end of file.) */ |
|||
extern int uncompressStream(int src_fd, int dst_fd) |
|||
{ |
|||
char *outbuf; |
|||
bunzip_data *bd; |
|||
int i; |
|||
|
|||
if(!(outbuf=(char*)malloc(IOBUF_SIZE))) return RETVAL_OUT_OF_MEMORY; |
|||
if(!(i=start_bunzip(&bd,src_fd,0,0))) { |
|||
for(;;) { |
|||
if((i=read_bunzip(bd,outbuf,IOBUF_SIZE)) <= 0) break; |
|||
if(i!=write(dst_fd,outbuf,i)) { |
|||
i=RETVAL_UNEXPECTED_OUTPUT_EOF; |
|||
break; |
|||
} |
|||
} |
|||
} |
|||
/* Check CRC and release memory */ |
|||
if(i==RETVAL_LAST_BLOCK && bd->headerCRC==bd->totalCRC) i=RETVAL_OK; |
|||
if(bd->dbuf) free(bd->dbuf); |
|||
free(bd); |
|||
free(outbuf); |
|||
return i; |
|||
} |
|||
|
|||
#ifdef TESTING |
|||
|
|||
static char * const bunzip_errors[]={NULL,"Bad file checksum","Not bzip data", |
|||
"Unexpected input EOF","Unexpected output EOF","Data error", |
|||
"Out of memory","Obsolete (pre 0.9.5) bzip format not supported."}; |
|||
|
|||
/* Dumb little test thing, decompress stdin to stdout */ |
|||
int main(int argc, char *argv[]) |
|||
{ |
|||
int i=uncompressStream(0,1); |
|||
char c; |
|||
|
|||
if(i) fprintf(stderr,"%s\n", bunzip_errors[-i]); |
|||
else if(read(0,&c,1)) fprintf(stderr,"Trailing garbage ignored\n"); |
|||
return -i; |
|||
} |
|||
#endif |
@ -0,0 +1,98 @@ |
|||
/* vi: set sw=4 ts=4: */ |
|||
/* Small bzip2 deflate implementation, by Rob Landley (rob@landley.net).
|
|||
|
|||
Based on bzip2 decompression code by Julian R Seward (jseward@acm.org), |
|||
which also acknowledges contributions by Mike Burrows, David Wheeler, |
|||
Peter Fenwick, Alistair Moffat, Radford Neal, Ian H. Witten, |
|||
Robert Sedgewick, and Jon L. Bentley. |
|||
|
|||
This code is licensed under the LGPLv2: |
|||
LGPL (http://www.gnu.org/copyleft/lgpl.html
|
|||
*/ |
|||
|
|||
/*
|
|||
Size and speed optimizations by Manuel Novoa III (mjn3@codepoet.org). |
|||
|
|||
More efficient reading of huffman codes, a streamlined read_bunzip() |
|||
function, and various other tweaks. In (limited) tests, approximately |
|||
20% faster than bzcat on x86 and about 10% faster on arm. |
|||
|
|||
Note that about 2/3 of the time is spent in read_unzip() reversing |
|||
the Burrows-Wheeler transformation. Much of that time is delay |
|||
resulting from cache misses. |
|||
|
|||
I would ask that anyone benefiting from this work, especially those |
|||
using it in commercial products, consider making a donation to my local |
|||
non-profit hospice organization (see www.hospiceacadiana.com) in the |
|||
name of the woman I loved, Toni W. Hagan, who passed away Feb. 12, 2003. |
|||
|
|||
Manuel |
|||
*/ |
|||
|
|||
/* Modified by Macoy Madson:
|
|||
- Give no errors with a C++ compiler (all -fpermissive errors) |
|||
- Add header file |
|||
*/ |
|||
|
|||
#include <setjmp.h> |
|||
|
|||
/* Constants for huffman coding */ |
|||
#define MAX_GROUPS 6 |
|||
#define GROUP_SIZE 50 /* 64 would have been more efficient */ |
|||
#define MAX_HUFCODE_BITS 20 /* Longest huffman code allowed */ |
|||
#define MAX_SYMBOLS 258 /* 256 literals + RUNA + RUNB */ |
|||
#define SYMBOL_RUNA 0 |
|||
#define SYMBOL_RUNB 1 |
|||
|
|||
/* Status return values */ |
|||
#define RETVAL_OK 0 |
|||
#define RETVAL_LAST_BLOCK (-1) |
|||
#define RETVAL_NOT_BZIP_DATA (-2) |
|||
#define RETVAL_UNEXPECTED_INPUT_EOF (-3) |
|||
#define RETVAL_UNEXPECTED_OUTPUT_EOF (-4) |
|||
#define RETVAL_DATA_ERROR (-5) |
|||
#define RETVAL_OUT_OF_MEMORY (-6) |
|||
#define RETVAL_OBSOLETE_INPUT (-7) |
|||
|
|||
/* Other housekeeping constants */ |
|||
#define IOBUF_SIZE 4096 |
|||
|
|||
/* This is what we know about each huffman coding group */ |
|||
struct group_data { |
|||
/* We have an extra slot at the end of limit[] for a sentinal value. */ |
|||
int limit[MAX_HUFCODE_BITS+1],base[MAX_HUFCODE_BITS],permute[MAX_SYMBOLS]; |
|||
int minLen, maxLen; |
|||
}; |
|||
|
|||
/* Structure holding all the housekeeping data, including IO buffers and
|
|||
memory that persists between calls to bunzip */ |
|||
typedef struct { |
|||
/* State for interrupting output loop */ |
|||
int writeCopies,writePos,writeRunCountdown,writeCount,writeCurrent; |
|||
/* I/O tracking data (file handles, buffers, positions, etc.) */ |
|||
int in_fd,out_fd,inbufCount,inbufPos /*,outbufPos*/; |
|||
unsigned char *inbuf /*,*outbuf*/; |
|||
unsigned int inbufBitCount, inbufBits; |
|||
/* The CRC values stored in the block header and calculated from the data */ |
|||
unsigned int crc32Table[256],headerCRC, totalCRC, writeCRC; |
|||
/* Intermediate buffer and its size (in bytes) */ |
|||
unsigned int *dbuf, dbufSize; |
|||
/* These things are a bit too big to go on the stack */ |
|||
unsigned char selectors[32768]; /* nSelectors=15 bits */ |
|||
struct group_data groups[MAX_GROUPS]; /* huffman coding tables */ |
|||
/* For I/O error handling */ |
|||
jmp_buf jmpbuf; |
|||
} bunzip_data; |
|||
|
|||
/* Allocate the structure, read file header. If in_fd==-1, inbuf must contain
|
|||
a complete bunzip file (len bytes long). If in_fd!=-1, inbuf and len are |
|||
ignored, and data is read from file handle into temporary buffer. */ |
|||
int start_bunzip(bunzip_data **bdp, int in_fd, char *inbuf, int len); |
|||
|
|||
/* Undo burrows-wheeler transform on intermediate buffer to produce output.
|
|||
If start_bunzip was initialized with out_fd=-1, then up to len bytes of |
|||
data are written to outbuf. Return value is number of bytes written or |
|||
error (all errors are negative numbers). If out_fd!=-1, outbuf and len |
|||
are ignored, data is written to out_fd and return is RETVAL_OK or error. |
|||
*/ |
|||
int read_bunzip(bunzip_data *bd, char *outbuf, int len); |
Loading…
Reference in new issue